Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Enhancing write I/O performance of disk array RM2 tolerating double disk failures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Young Jin Nam ; Dept. of Comput. Sci. & Eng., Pohang Univ. of Sci. & Technol., Kyungbuk, South Korea ; Dae-Woong Kim ; Tae-Young Choe ; Chanik Park

With a large number of internal disks and the rapid growth of disk capacity, storage systems become more susceptible to double disk failures. Thus, the need for such reliable storage systems as RAID6 is expected to gain in importance. However RAID6 architectures such as RM2, P+Q, EVEN-ODD, and DATUM traditionally suffer from a low write I/O performance caused by updating two distinctive parity data associated with user data. To overcome such a low write I/O performance, we propose an enhanced RM2 architecture which combines RM2, one of the well-known RAID6 architectures, with a Lazy Parity Update (LPU) technique. Extensive performance evaluations reveal that the write I/O performance of the proposed architecture is about two times higher than that of RM2 under various I/O workloads with little degradation in reliability.

Published in:

Parallel Processing, 2002. Proceedings. International Conference on

Date of Conference:

2002