By Topic

Combined endoscopic video tracking and virtual 3D CT registration for surgical guidance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Helferty, J.P. ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Higgins, W.E.

Bronchoscopic needle biopsy is a common step for early lung-cancer detection. This procedure uses two steps: (1) 3D computed-tomography (CT) chest image analysis, to choose a biopsy site; (2) live bronchoscopy, to perform the biopsy. CT-based virtual endoscopic analysis can improve the results of biopsies, yet errors can still occur. We describe a procedure to combine the endoscopic video tracking (the "real" world) and CT-based virtual endoscopic registration (the "virtual" world). By bringing both sources of information together, a more robust surgical guidance system is realizable. Both the endoscope's video and the thoracic CT scan are used as data sources in the tracking. An optical flow algorithm estimates the endoscope motion between successive video frames. The virtual CT rendering creates a range map for the optical flow equation. This simplifies the endoscope movement calculation into a straightforward linear system. We demonstrate this method for a phantom human airway-tree example.

Published in:

Image Processing. 2002. Proceedings. 2002 International Conference on  (Volume:2 )

Date of Conference:

2002