By Topic

Design and characterization of a radiation-tolerant optical transmitter using discrete COTS bipolar transistors and VCSELs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Berghmans, F. ; Belgian Nucl. Res. Center, SCK/CEN, Mol, Belgium ; Embrechts, K. ; Van Uffelen, M. ; Coenen, S.
more authors

In this paper, we design and test a radiation-tolerant opto-electronic transmitter based on vertical-cavity surface-emitting lasers (VCSELs) and dedicated driver electronics consisting of discrete components. VCSELs have already demonstrated their good radiation tolerance level. We confirm this by on-line irradiation experiments on such devices up to a 10-MGy total dose. For the design of the driver circuit, we rely on discrete commercial-off-the-shelf (COTS) bipolar transistors. When the radiation induced degradation of these components is considered within the design of the circuits, total dose levels larger than 1 MGy can be tolerated. The driver uses standard Transistor-Transistor Logic TTL input signals and delivers a forward current of 12 mA to a pigtailed 840-nm VCSEL. SPICE simulations show that the driver still delivers a sufficient forward current to the VCSEL in spite of the radiation induced degradation of the hFE and VCESat values of the transistors. These simulations are verified by our experiments. At a total dose of 1 MGy, the measured decrease of the forward current is only about 8%, as measured for three driver circuits. This induces an optical output power decrease that can still be tolerated with irradiated VCSELs, as shown by our experiments. We conclude that a high total dose hardened optical transmitter for use in nuclear instrumentation systems can be fabricated using discrete COTS bipolar transistors, COTS vertical-cavity surface-emitting lasers, and COTS optical fiber.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:49 ,  Issue: 3 )