By Topic

Feedforward maximum power point tracking of PV systems using fuzzy controller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
veerachary, M. ; Fac. of Eng., Ryukyus Univ., Okinawa, Japan ; Senjyu, T. ; Uezato, K.

A feedforward maximum power (MP) point tracking scheme is developed for the interleaved dual boost (IDB) converter fed photovoltaic (PV) system using fuzzy controller. The tracking algorithm changes the duty ratio of the converter such that the solar cell array (SCA) voltage equals the voltage corresponding to the MP point at that solar insolation. This is done by the feedforward loop, which generates an error signal by comparing the instantaneous array voltage and reference voltage. The reference voltage for the feedforward loop, corresponding to the MP point, is obtained by an off-line trained neural network. Experimental data is used for off-line training of the neural network, which employs back-propagation algorithm. The proposed fuzzy feedforward peak power tracking effectiveness is demonstrated through the simulation and experimental results, and compared with the conventional proportional plus integral (PI) controller based system. Finally, a comparative study of interleaved boost and conventional boost converter for the PV applications is given and their suitability is discussed.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:38 ,  Issue: 3 )