By Topic

Tracking multiple objects with particle filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hue, C. ; IRISA, Rennes I Univ., France ; Le Cadre, J.-P. ; Perez, P.

We address the problem of multitarget tracking (MTT) encountered in many situations in signal or image processing. We consider stochastic dynamic systems detected by observation processes. The difficulty lies in the fact that the estimation of the states requires the assignment of the observations to the multiple targets. We propose an extension of the classical particle filter where the stochastic vector of assignment is estimated by a Gibbs sampler. This algorithm is used to estimate the trajectories of multiple targets from their noisy bearings, thus showing its ability to solve the data association problem. Moreover this algorithm is easily extended to multireceiver observations where the receivers can produce measurements of various nature with different frequencies.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:38 ,  Issue: 3 )