By Topic

An efficient branch-and-bound algorithm for the assignment of protein backbone NMR peaks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Guohui Lin ; Dept. of Comput. Sci., Alberta Univ., Edmonton, Alta., Canada ; Dong Xu ; Zhi-Zhong Chen ; Tao Jiang
more authors

NMR resonance assignment is one of the key steps in solving an NMR protein structure. The assignment process links resonance peaks to individual residues of the target protein sequence, providing the prerequisite for establishing intra- and inter-residue spatial relationships between atoms. The assignment process is tedious and time-consuming, which could take many weeks. Though there exist a number of computer programs to assist the assignment process, many NMR labs are still doing the assignments manually to ensure quality. This paper presents a new computational method based on our recent work towards automating the assignment process, particularly the process of backbone resonance peak assignment. We formulate the assignment problem as a constrained weighted bipartite matching problem. While the problem, in the most general situation, is NP-hard, we present an efficient solution based on a branch-and-bound algorithm with effective bounding techniques and a greedy filtering algorithm for reducing the search space. Our experimental results on 70 instances of (pseudo) real NMR data derived from 14 proteins demonstrate that the new solution runs much faster than a recently introduced (exhaustive) two-layer algorithm and recovers more correct peak assignments than the two-layer algorithm.

Published in:

Bioinformatics Conference, 2002. Proceedings. IEEE Computer Society

Date of Conference: