By Topic

Estimating the intrinsic dimension of data with a fractal-based method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. Camastra ; INFM-DISI, Genoa Univ., Italy ; A. Vinciarelli

In this paper, the problem of estimating the intrinsic dimension of a data set is investigated. A fractal-based approach using the Grassberger-Procaccia algorithm is proposed. Since the Grassberger-Procaccia algorithm (1983) performs badly on sets of high dimensionality, an empirical procedure that improves the original algorithm has been developed. The procedure has been tested on data sets of known dimensionality and on time series of Santa Fe competition.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:24 ,  Issue: 10 )