By Topic

Efficient simplicial reconstructions of manifolds from their samples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Freedman, D. ; Dept. of Comput. Sci., Rensselaer Polytech. Inst., Troy, NY, USA

An algorithm for manifold learning is presented. Given only samples of a finite-dimensional differentiable manifold and no a priori knowledge of the manifold's geometry or topology except for its dimension, the goal is to find a description of the manifold. The learned manifold must approximate the true manifold well, both geometrically and topologically, when the sampling density is sufficiently high. The proposed algorithm constructs a simplicial complex based on approximations to the tangent bundle of the manifold. An important property of the algorithm is that its complexity depends on the dimension of the manifold, rather than that of the embedding space. Successful examples are presented in the cases of learning curves in the plane, curves in space, and surfaces in space; in addition, a case when the algorithm fails is analyzed.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 10 )