Cart (Loading....) | Create Account
Close category search window
 

Computational military tactical planning system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kewley, R.H. ; Center for Army Anal., Fort Belvoir, VA, USA ; Embrechts, M.J.

A computational system called fuzzy-genetic decision optimization combines two soft computing methods, genetic optimization and fuzzy ordinal preference, and a traditional hard computing method, stochastic system simulation, to tackle the difficult task of generating battle plans for military tactical forces. Planning for a tactical military battle is a complex, high-dimensional task which often bedevils experienced professionals. In fuzzy-genetic decision optimization, the military commander enters his battle outcome preferences into a user interface to generate a fuzzy ordinal preference model that scores his preference for any battle outcome. A genetic algorithm iteratively generates populations of battle plans for evaluation in a stochastic combat simulation. The fuzzy preference model converts the simulation results into a fitness value for each population member, allowing the genetic algorithm to generate the next population. Evolution continues until the system produces a final population of high-performance plans which achieve the commander's intent for the mission. Analysis of experimental results shows that co-evolution of friendly and enemy plans by competing genetic algorithms improves the performance of the planning system. If allowed to evolve long enough, the plans produced by automated algorithms had a significantly higher mean performance than those generated by experienced military experts.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:32 ,  Issue: 2 )

Date of Publication:

May 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.