By Topic

Incorporating soft computing techniques into a probabilistic intrusion detection system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sung-Bae Cho ; Dept. of Comput. Sci., Yonsei Univ., Seoul, South Korea

There are a lot of industrial applications that can be solved competitively by hard computing, while still requiring the tolerance for imprecision and uncertainty that can be exploited by soft computing. This paper presents a novel intrusion detection system (IDS) that models normal behaviors with hidden Markov models (HMM) and attempts to detect intrusions by noting significant deviations from the models. Among several soft computing techniques neural network and fuzzy logic are incorporated into the system to achieve robustness and flexibility. The self-organizing map (SOM) determines the optimal measures of audit data and reduces them into appropriate size for efficient modeling by HMM. Based on several models with different measures, fuzzy logic makes the final decision of whether current behavior is abnormal or not. Experimental results with some real audit data show that the proposed fusion produces a viable intrusion detection system. Fuzzy rules that utilize the models based on the measures of system call, file access, and the combination of them produce more reliable performance.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:32 ,  Issue: 2 )