Cart (Loading....) | Create Account
Close category search window

Soft computing applications in aircraft sensor management and flight control law reconfiguration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Oosterom, M. ; Control Syst. Eng., Delft Univ. of Technol., Netherlands ; Babuska, R. ; Verbruggen, H.B.

A sensor management system based on soft computing techniques has been developed and implemented in the flight control system of a small commercial aircraft. Unlike in the conventional sensor management system, the signals from sensors are assigned weights based on fuzzy membership functions and the consolidated signal is computed as a weighted average. This approach improves the quality of the consolidated signal and reduces transients due to sensor failures. This soft voting is extended to soft flight control law reconfiguration. In addition, a virtual sensor has been introduced as an arbitrator which enables the isolation of the failed sensor in the duplex operation and the detection of a sensor failure in the simplex operation. The effectiveness of the proposed methods is demonstrated by using an extensive simulation model of a small commercial aircraft, developed by airframe and control system manufacturers on the basis of an existing business jet. Furthermore, the system has been successfully evaluated and compared to standard techniques by means of pilot-in-the-loop simulations on the Research Flight Simulator of the National Aerospace Laboratory in The Netherlands. This application, developed within a Brite/EuRam research project, is characterized by the effective combination of novel soft computing techniques with standard, well proven methods of the aircraft industry. The properties of the conventional sensor management system have been retained, with the additional advantage that the quality of the consolidated signal is improved, the failure-induced transients are reduced, and the consolidated signal remains available up to the last valid sensor.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:32 ,  Issue: 2 )

Date of Publication:

May 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.