Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Fusion of soft computing and hard computing in industrial applications: an overview

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ovaska, S.J. ; Inst. of Intelligent Power Electron., Helsinki Univ. of Technol., Espoo, Finland ; Vanlandingham, H.F. ; Kamiya, A.

Soft computing (SC) is an emerging collection of methodologies which aims to exploit tolerance for imprecision, uncertainty, and partial truth to achieve robustness, tractability, and low total cost. It differs from conventional hard computing (HC) in the sense that, unlike hard computing, it is strongly based on intuition or subjectivity. Therefore, soft computing provides an attractive opportunity to represent the ambiguity in human thinking with real life uncertainty. Fuzzy logic (FL), neural networks (NN), and genetic algorithms (GA) are the core methodologies of soft computing. However, FL, NN, and GA should not be viewed as competing with each other, but synergistic and complementary instead. Considering the number of available journal and conference papers on various combinations of these three methods, it is easy to conclude that the fusion of individual soft computing methodologies has already been advantageous in numerous applications. On the other hand, hard computing solutions are usually more straightforward to analyze; their behavior and stability are more predictable; and, the computational burden of algorithms is typically either low or moderate. These characteristics. are particularly important in real-time applications. Thus, it is natural to see SC and HC as potentially complementary methodologies. Novel combinations of different methods are needed when developing high-performance, cost-effective, and safe products for the demanding global market. We present an overview of applications in which the fusion of soft computing and hard computing has provided innovative solutions for challenging real-world problems. A carefully selected list of references is considered with evaluative discussions and conclusions.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:32 ,  Issue: 2 )