By Topic

Long term tracking using Bayesian networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abrantes, A.J. ; ISEL - Instituto Superior de Engenharia de Lisboa, Portugal ; Marques, J.S. ; Lemos, J.M.

This paper addresses long term tracking of multiple objects with occlusions. Bayesian networks are used to model the interaction among the detected tracks and for conflict management, allowing the tracker to update the labelling decisions as soon as new information is available. If several objects overlap in the image domain and then become separated in the next frames, the proposed algorithm is able to accumulate the evidence extracted from the images and to disambiguate the competing labels. The system also provides a confidence degree for each labelling decision. Experimental results are provided to illustrate the performance of the proposed method for long term tracking of multiple pedestrians.

Published in:

Image Processing. 2002. Proceedings. 2002 International Conference on  (Volume:3 )

Date of Conference:

24-28 June 2002