By Topic

Image segmentation using clustering with saddle point detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
D. Comaniciu ; Vision & Modeling Dept., Siemens Corp. Res. Inc., Princeton, NJ, USA

We discuss a novel statistical framework for image segmentation based on nonparametric clustering. By employing the mean shift procedure for analysis, image regions are identified as clusters in the joint color-spatial domain. To measure the significance of each cluster we use a test statistics that compares the estimated density of the cluster mode with the estimated density on the cluster boundary. The cluster boundary in the color domain is defined by saddle points lying on the cluster borders defined in the spatial domain. The proposed technique compares favorably to other segmentation methods described in literature.

Published in:

Image Processing. 2002. Proceedings. 2002 International Conference on  (Volume:3 )

Date of Conference: