By Topic

An unconditionally stable extended (USE) finite-element time-domain solution of active nonlinear microwave circuits using perfectly matched layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hsiao-Ping Tsai ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; Wang, Yuanxun ; Itoh, T.

This paper proposes an extension of the unconditionally stable finite-element time-domain (FETD) method for the global electromagnetic analysis of active microwave circuits. This formulation has two advantages. First, the time-step size is no longer governed by the spatial discretization of the mesh, but rather by the Nyquist sampling criterion. Second, the implementation of the truncation by the perfectly matched layers (PML) is straightforward. An anisotropic PML absorbing material is presented for the truncation of FETD lattices. Reflection less than -50 dB is obtained numerically over the entire propagation bandwidth in waveguide and microstrip line. A benchmark test on a microwave amplifier indicates that this extended FETD algorithm is not only superior to finite-difference time-domain-based algorithm in mesh flexibility and simulation accuracy, but also reduces computation time dramatically.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:50 ,  Issue: 10 )