By Topic

Simultaneous voltage scaling and gate sizing for low-power design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chunhong Chen ; Dept. of Electr. & Comput. Eng., Windsor Univ., Ont., Canada ; M. Sarrafzadeh

This paper presents a new approach using simultaneous voltage-scaling and gate-sizing for low power without violating the timing constraints. We provide the problem formulation in this application, and propose algorithms for single voltage-scaling, single gate-sizing, and their simultaneous manipulation. We target a globally optimal solution by showing how the power optimization is related to the maximum-weighted-independent-set (MWIS) problem. Experimental results on a set of benchmark circuits show that the simultaneous voltage-scaling and gate-sizing generates maximum power reduction. The average power savings range from 23% to 57% over all tested circuits, depending upon the circuit topology, underlying gate library and specific supply voltages.

Published in:

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing  (Volume:49 ,  Issue: 6 )