By Topic

Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Byoung-Jun Park ; Sch. of Electr. & Electron. Eng., Wonkwang Univ., Chon-Buk, South Korea ; W. Pedrycz ; Sung-Kwun Oh

We introduce a concept of fuzzy polynomial neural networks (FPNNs), a hybrid modeling architecture combining polynomial neural networks (PNNs) and fuzzy neural networks (FNNs). The development of the FPNNs dwells on the technologies of computational intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The structure of the FPNN results from a synergistic usage of FNN and PNN. FNNs contribute to the formation of the premise part of the rule-based structure of the FPNN. The consequence part of the FPNN is designed using PNNs. The structure of the PNN is not fixed in advance as it usually takes place in the case of conventional neural networks, but becomes organized dynamically to meet the required approximation error. We exploit a group method of data handling (GMDH) to produce this dynamic topology of the network. The performance of the FPNN is quantified through experimentation that exploits standard data already used in fuzzy modeling. The obtained experimental results reveal that the proposed networks exhibit high accuracy and generalization capabilities in comparison to other similar fuzzy models.

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:10 ,  Issue: 5 )