By Topic

Scalable secure group communication over IP multicast

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Banerjee ; Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA ; B. Bhattacharjee

We introduce and analyze a scalable rekeying scheme for implementing secure group communications Internet protocol multicast. We show that our scheme incurs constant processing, message, and storage overhead for a rekey operation when a single member joins or leaves the group, and logarithmic overhead for bulk simultaneous changes to the group membership. These bounds hold even when group dynamics are not known a priori. Our rekeying algorithm requires a particular clustering of the members of the secure multicast group. We describe a protocol to achieve such clustering and show that it is feasible to efficiently cluster members over realistic Internet-like topologies. We evaluate the overhead of our own rekeying scheme and also of previously published schemes via simulation over an Internet topology map containing over 280 000 routers. Through analysis and detailed simulations, we show that this rekeying scheme performs better than previous schemes for a single change to group membership. Further, for bulk group changes, our algorithm outperforms all previously known schemes by several orders of magnitude in terms of actual bandwidth usage, processing costs, and storage requirements.

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:20 ,  Issue: 8 )