Cart (Loading....) | Create Account
Close category search window

Efficient video similarity measurement with video signature

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheung, S.S. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Zakhor, A.

The video signature method has previously been proposed as a technique to summarize video efficiently for visual similarity measurements (see Cheung, S.-C. and Zakhor, A., Proc. SPIE, vol.3964, p.34-6, 2000; ICIP2000, vol.1, p.85-9, 2000; ICIP2001, vol.1, p.649-52, 2001). We now develop the necessary theoretical framework to analyze this method. We define our target video similarity measure based on the fraction of similar clusters shared between two video sequences. This measure is too computationally complex to be deployed in database applications. By considering this measure geometrically on the image feature space, we find that it can be approximated by the volume of the intersection between Voronoi cells of similar clusters. In the video signature method, sampling is used to estimate this volume. By choosing an appropriate distribution to generate samples, and ranking the samples based upon their distances to the boundary between Voronoi cells, we demonstrate that our target measure can be well approximated by the video signature method. Experimental results on a large dataset of Web video and a set of MPEG-7 test sequences with artificially generated similar versions are used to demonstrate the retrieval performance of our proposed techniques.

Published in:

Image Processing. 2002. Proceedings. 2002 International Conference on  (Volume:1 )

Date of Conference:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.