Cart (Loading....) | Create Account
Close category search window
 

Vapor detection, classification, and quantification performance using arrays of conducting polymer composite chemically sensitive resistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Briglin, S.M. ; Noyes Lab., California Inst. of Technol., Pasadena, CA, USA ; Freund, M.S. ; Sisk, B.C. ; Lewis, N.S.

Describes a method for generating a variety of chemically diverse, broadly responsive, low power vapor sensors. A key to our ability to fabricate chemically diverse sensing elements is the preparation of processable, air stable films of electrically conducting organic polymers. An array of such sensing elements produces a chemically reversible, diagnostic pattern of electrical resistance changes upon exposure to different odorants. Such conducting polymer elements are simply prepared and are readily modified chemically to respond to a broad range of analytes. In addition, these sensors yield a fairly rapid, low power, dc electrical signal in response to the vapor of interest, and their signals are readily integrated with software or hardware-based neural networks for purposes of analyte identification. Principal component analysis has demonstrated that such sensors can identify and quantify different airborne organic solvents, and can yield information on the components of gas mixtures.

Published in:

Sensors, 2002. Proceedings of IEEE  (Volume:1 )

Date of Conference:

2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.