By Topic

Multilevel voltage-source duty-cycle modulation: analysis and implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. A. Corzine ; Dept. of Electr. Eng., Wisconsin Univ., Milwaukee, WI, USA ; J. R. Baker

Multilevel converters have become increasingly popular due to high power quality, high-voltage capability, low switching losses, and low electromagnetic compatibility concerns. Considering these advantages, the multilevel converter is a suitable candidate for implementation of future naval ship propulsion systems. This paper focuses on modulation techniques for the multilevel converter. In particular, a novel voltage-source method of multilevel modulation is introduced and compared to existing methods. The proposed method is discrete in nature and can therefore be readily implemented on a digital signal processor. The method is also readily extendable to any number of voltage levels. Results of experimental implementation are demonstrated using a four-level rectifier/inverter system, which incorporates diode-clamped multilevel converters and an 11-level cascaded multilevel H-bridge inverter.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:49 ,  Issue: 5 )