By Topic

Dynamics and stability of wind and diesel turbine generators with superconducting magnetic energy storage unit on an isolated power system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tripathy, S.C. ; Center for Energy Studies, Indian Inst. of Technol., New Delhi, India ; Kalantar, M. ; Balasubramanian, R.

Dynamic system analysis is carried out on an isolated electric power system consisting of a diesel generator and a wind-turbine generator. The 150 kW wind turbine is operated in parallel with a diesel generator to serve an average load of 350 kW. A comprehensive digital computer model of the interconnected power system including the diesel and wind-power dynamics with a superconducting magnetic energy storage (SMES) unit is developed. Time-domain solutions are used to study the performance of the power system and control logic. Based on a linear model of the system, it is shown that changes in control-system settings could be made to improve damping and optimization of gain parameters and stability studies are done using the Lyapunov technique and eigenvalue analysis. The effect of introducing the SMES unit for improvement of stability and system dynamic response is studied

Published in:

Energy Conversion, IEEE Transactions on  (Volume:6 ,  Issue: 4 )