By Topic

Real-time implementation of a new low-memory SPIHT image coding algorithm using DSP chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong Sun ; Dept. of Electr. Eng., Tsinghua Univ., Beijing, China ; Hui Zhang ; Guangshu Hu

Among all algorithms based on wavelet transform and zerotree quantization, Said and Pearlman's (1996) set partitioning in hierarchical trees (SPIHT) algorithm is well-known for its simplicity and efficiency. This paper deals with the real-time implementation of SPIHT algorithm using DSP chip. In order to facilitate the implementation and improve the codec's performance, some relative issues are thoroughly discussed, such as the optimization of program structure to speed up the wavelet decomposition. SPIHT's high memory requirement is a major drawback for hardware implementation. In this paper, we modify the original SPIHT algorithm by presenting two new concepts-number of error bits and absolute zerotree. Consequently, the memory cost is significantly reduced. We also introduce a new method to control the coding process by number of error bits. Our experimental results show that the implementation meets common requirement of real-time video coding and is proven to be a practical and efficient DSP solution.

Published in:

Image Processing, IEEE Transactions on  (Volume:11 ,  Issue: 9 )