By Topic

Combining spatial and scale-space techniques for edge detection to provide a spatially adaptive wavelet-based noise filtering algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Faghih, F. ; Dept. of Electr. & Comput. Eng., Calgary Univ., Alta., Canada ; Smith, M.

New methods for detecting edges in an image using spatial and scale-space domains are proposed. A priori knowledge about geometrical characteristics of edges is used to assign a probability factor to the chance of any pixel being on an edge. An improved double thresholding technique is introduced for spatial domain filtering. Probabilities that pixels belong to a given edge are assigned based on pixel similarity across gradient amplitudes, gradient phases and edge connectivity. The scale-space approach uses dynamic range compression to allow wavelet correlation over a wider range of scales. A probabilistic formulation is used to combine the results obtained from filtering in each domain to provide a final edge probability image which has the advantages of both spatial and scale-space domain methods. Decomposing this edge probability image with the same wavelet as the original image permits the generation of adaptive filters that can recognize the characteristics of the edges in all wavelet detail and approximation images regardless of scale. These matched filters permit significant reduction in image noise without contributing to edge distortion. The spatially adaptive wavelet noise-filtering algorithm is qualitatively and quantitatively compared to a frequency domain and two wavelet based noise suppression algorithms using both natural and computer generated noisy images.

Published in:

Image Processing, IEEE Transactions on  (Volume:11 ,  Issue: 9 )