Cart (Loading....) | Create Account
Close category search window
 

Geometrically invariant watermarking using feature points

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bas, P. ; Lab. des Images et des Signaux, St. Martin d''Heres, France ; Chassery, J.-M. ; Macq, B.

This paper presents a new approach for watermarking of digital images providing robustness to geometrical distortions. The weaknesses of classical watermarking methods to geometrical distortions are outlined first. Geometrical distortions can be decomposed into two classes: global transformations such as rotations and translations and local transformations such as the StirMark attack. An overview of existing self-synchronizing schemes is then presented. Theses schemes can use periodical properties of the mark, invariant properties of transforms, template insertion, or information provided by the original image to counter geometrical distortions. Thereafter, a new class of watermarking schemes using the image content is presented. We propose an embedding and detection scheme where the mark is bound with a content descriptor defined by salient points. Three different types of feature points are studied and their robustness to geometrical transformations is evaluated to develop an enhanced detector. The embedding of the signature is done by extracting feature points of the image and performing a Delaunay tessellation on the set of points. The mark is embedded using a classical additive scheme inside each triangle of the tessellation. The detection is done using correlation properties on the different triangles. The performance of the presented scheme is evaluated after JPEG compression, geometrical attack and transformations. Results show that the fact that the scheme is robust to these different manipulations. Finally, in our concluding remarks, we analyze the different perspectives of such content-based watermarking scheme.

Published in:

Image Processing, IEEE Transactions on  (Volume:11 ,  Issue: 9 )

Date of Publication:

Sep 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.