By Topic

A comparison of computational color constancy Algorithms. II. Experiments with image data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Barnard, K. ; Simon Fraser Univ., Burnaby, BC, Canada ; Martin, L. ; Coath, A. ; Funt, B.

For pt.I see ibid., vol. 11, no.9, p.972-84 (2002). We test a number of the leading computational color constancy algorithms using a comprehensive set of images. These were of 33 different scenes under 11 different sources representative of common illumination conditions. The algorithms studied include two gray world methods, a version of the Retinex method, several variants of Forsyth's (1990) gamut-mapping method, Cardei et al.'s (2000) neural net method, and Finlayson et al.'s color by correlation method (Finlayson et al. 1997, 2001; Hubel and Finlayson 2000). We discuss a number of issues in applying color constancy ideas to image data, and study in depth the effect of different preprocessing strategies. We compare the performance of the algorithms on image data with their performance on synthesized data. All data used for this study are available online at http://www.cs.sfu.ca/∼color/data, and implementations for most of the algorithms are also available (http://www.cs.sfu.ca/∼color/code). Experiments with synthesized data (part one of this paper) suggested that the methods which emphasize the use of the input data statistics, specifically color by correlation and the neural net algorithm, are potentially the most effective at estimating the chromaticity of the scene illuminant. Unfortunately, we were unable to realize comparable performance on real images. Here exploiting pixel intensity proved to be more beneficial than exploiting the details of image chromaticity statistics, and the three-dimensional (3-D) gamut-mapping algorithms gave the best performance.

Published in:

Image Processing, IEEE Transactions on  (Volume:11 ,  Issue: 9 )