By Topic

A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Barnard, K. ; Simon Fraser Univ., Burnaby, BC, Canada ; Cardei, V. ; Funt, B.

We introduce a context for testing computational color constancy, specify our approach to the implementation of a number of the leading algorithms, and report the results of three experiments using synthesized data. Experiments using synthesized data are important because the ground truth is known, possible confounds due to camera characterization and pre-processing are absent, and various factors affecting color constancy can be efficiently investigated because they can be manipulated individually and precisely. The algorithms chosen for close study include two gray world methods, a limiting case of a version of the Retinex method, a number of variants of Forsyth's (1990) gamut-mapping method, Cardei et al.'s (2000) neural net method, and Finlayson et al.'s color by correlation method (Finlayson et al. 1997, 2001; Hubel and Finlayson 2000) . We investigate the ability of these algorithms to make estimates of three different color constancy quantities: the chromaticity of the scene illuminant, the overall magnitude of that illuminant, and a corrected, illumination invariant, image. We consider algorithm performance as a function of the number of surfaces in scenes generated from reflectance spectra, the relative effect on the algorithms of added specularities, and the effect of subsequent clipping of the data. All data is available on-line at∼color/data, and implementations for most of the algorithms are also available (∼color/code).

Published in:

Image Processing, IEEE Transactions on  (Volume:11 ,  Issue: 9 )