By Topic

Estimation of 3-D left ventricular deformation from medical images using biomechanical models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Papademetris, X. ; Dept. of Diagnostic Radiol., Yale Univ., New Haven, CT, USA ; Sinusas, A.J. ; Dione, D.P. ; Constable, R.T.
more authors

The quantitative estimation of regional cardiac deformation from three-dimensional (3-D) image sequences has important clinical implications for the assessment of viability in the heart wall. We present here a generic methodology for estimating soft tissue deformation which integrates image-derived information with biomechanical models, and apply it to the problem of cardiac deformation estimation. The method is image modality independent. The images are segmented interactively and then initial correspondence is established using a shape-tracking approach. A dense motion field is then estimated using a transversely isotropic, linear-elastic model, which accounts for the muscle fiber directions in the left ventricle. The dense motion field is in turn used to calculate the deformation of the heart wall in terms of strain in cardiac specific directions. The strains obtained using this approach in open-chest dogs before and after coronary occlusion, exhibit a high correlation with strains produced in the same animals using implanted markers. Further, they show good agreement with previously published results in the literature. This proposed method provides quantitative regional 3-D estimates of heart deformation.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:21 ,  Issue: 7 )