By Topic

The use of visual search for knowledge gathering in image decision support

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
L. Dempere-Marco ; R. Soc./Wolfson Found. Med. Image Comput. Lab., Imperial Coll. of Sci., Technol. & Med., London, UK ; Xiao-Peng Hu ; S. L. S. MacDonald ; S. M. Ellis
more authors

This paper presents a new method of knowledge gathering for decision support in image understanding based on information extracted from the dynamics of saccadic eye movements. The framework involves the construction of a generic image feature extraction library, from which the feature extractors that are most relevant to the visual assessment by domain experts are determined automatically through factor analysis. The dynamics of the visual search are analyzed by using the Markov model for providing training information to novices on how and where to look for image features. The validity of the framework has been evaluated in a clinical scenario whereby the pulmonary vascular distribution on Computed Tomography images was assessed by experienced radiologists as a potential indicator of heart failure. The performance of the system has been demonstrated by training four novices to follow the visual assessment behavior of two experienced observers. In all cases, the accuracy of the students improved from near random decision making (33%) to accuracies ranging from 50% to 68%.

Published in:

IEEE Transactions on Medical Imaging  (Volume:21 ,  Issue: 7 )