Cart (Loading....) | Create Account
Close category search window
 

An algorithm using visible and 1.38-μm channels to retrieve cirrus cloud reflectances from aircraft and satellite data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bo-Cai Gao ; Remote Sensing Div., Naval Res. Lab., Washington, DC, USA ; Ping Yang ; Wei Han ; Rong-Rong Li
more authors

The Moderate Resolution Imaging Spectro-Radiometer (MODIS) on the Terra spacecraft has a channel near 1.38 μm for remote sensing of high clouds from space. The implementation of this channel on MODIS was primarily based on previous analysis of hyperspectral imaging data collected with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). We describe an algorithm to retrieve cirrus bidirectional reflectance using channels near 0.66 and 1.38 μm. It is shown that the apparent reflectance of the 1.38-μm channel is essentially the bidirectional reflectance of cirrus clouds attenuated by the absorption of water vapor above cirrus clouds. A practical algorithm based on the scatterplot of 1.38-μm channel apparent reflectance versus 0.66-μm channel apparent reflectance has been developed to scale the effect of water vapor absorption so that the true cirrus reflectance in the visible spectral region can be obtained. To illustrate the applicability of the present algorithm, results for cirrus reflectance retrievals from AVIRIS and MODIS data are shown. The derived cirrus reflectance in the spectral region of 0.4-1 μm can be used to remove cirrus contamination in a satellite image obtained at a visible channel. An example of such an application is shown. The spatially averaged cirrus reflectances derived from MODIS data can be used to establish global cirrus climatology, as is demonstrated by a sample global cirrus reflectance image.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 8 )

Date of Publication:

Aug 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.