By Topic

An integrated equivalent circuit model for relative intensity noise and frequency noise spectrum of a multimode semiconductor laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mortazy, E. ; Dept. of Electron. Eng., Tarbiat Modares Univ., Tehran, Iran ; Ahmadi, V. ; Moravvej-Farshi, Mohammad Kazem

Relative intensity noise (RIN) and the frequency/phase noise spectrum (FNS) equivalent circuit of a multimode semiconductor laser diode are derived from multimode rate equations with the inclusion of noise Langevin sources. FNS is an important parameter in optical communication systems, and its circuit model is presented, for the first time, in this paper. Both circuit models for RIN and FNS are integrated in one circuit. RIN and FNS are calculated as functions of frequency, output power, and mode number. It is shown that the RIN of the main mode is increased in the multimode lasers with higher mode numbers. Furthermore, we show that RIN and FNS are enhanced for higher output power. The dependency of a multimode laser diode linewidth on output power is also analyzed using the model.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:38 ,  Issue: 10 )