By Topic

Coupling between photonic crystal waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kuchinsky, Sergey ; Corning Sci. Center, St. Petersburg, Russia ; Golyatin, V.Y. ; Kutikov, A.Y. ; Pearsall, T.P.
more authors

A calculation procedure for evaluation of the coupling length of two parallel coupled channel waveguides in a planar photonic crystal is proposed. The first step of the calculation is evaluation of the band structure of a photonic crystal containing two coupled linear defects. The eigenvalue corresponding to eigenstates localized in the linear defect (the waveguide) is split due to the coupling. This splitting is treated within the coupled-mode theory that yields a simple relation between the splitting and the coupling length. The MIT photonic bands code is used to evaluate the coupling between channel waveguides in silicon.1 These calculations show that in contrast to the finite-difference time-domain approach, the method is effective for three-dimensional light propagation.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:38 ,  Issue: 10 )