By Topic

Sensitivity and stability of a radiation-balanced laser system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bowman, S.R. ; Photonics Technol. Branch, US Naval Res. Lab., Washington, DC, USA ; Jenking, N.W. ; O'Connor, S.R. ; Feldman, Barry J.

It has been previously shown that it is theoretically possible to build a solid-state laser that generates no internal heat. This is accomplished through a detailed balance of the stimulated and spontaneous emission. Such a device is called a radiation-balanced laser. Here, we analyze laser operation when conditions deviate from perfect balance. Sensitivity and stability analyses are presented for perturbations in the field parameters and temperature. We show that the radiation balance is a stable equilibrium under both transient and steady-state perturbations. Limits are derived on the magnitude of allowable spatial perturbations, and techniques for spatial mode matching are discussed. Numerical simulations of 1-μm laser operation of Yb-doped potassium gadolinium tungstate are provided as an example.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:38 ,  Issue: 10 )