By Topic

Design and implementation of a brain-computer interface with high transfer rates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ming Cheng ; Dept. of Electr. Eng., Tsinghua Univ., Beijing, China ; Xiaorong Gao ; Shangkai Gao ; Dingfeng Xu

This paper presents a brain-computer interface (BCI) that can help users to input phone numbers. The system is based on the steady-state visual evoked potential (SSVEP). Twelve buttons illuminated at different rates were displayed on a computer monitor. The buttons constituted a virtual telephone keypad, representing the ten digits 0-9, BACKSPACE, and ENTER. Users could input phone number by gazing at these buttons. The frequency-coded SSVEP was used to judge which button the user desired. Eight of the thirteen subjects succeeded in ringing the mobile phone using the system. The average transfer rate over all subjects was 27.15 bits/min. The attractive features of the system are noninvasive signal recording, little training required for use, and high information transfer rate. Approaches to improve the performance of the system are discussed.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:49 ,  Issue: 10 )