Cart (Loading....) | Create Account
Close category search window
 

Binaural sonar electronic travel aid provides vibrotactile cues for landmark, reflector motion and surface texture classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kuc, R. ; Dept. of Electr. Eng., Yale Univ., New Haven, CT, USA

Electronic travel aids (ETAs) for the blind commonly employ conventional time-of-flight sonars to provide range measurements, but their wide beams prevent accurate determination of object bearing. We describe a binaural sonar that detects objects over a wider bearing interval compared with a single transducer and also determines if the object lies to the left or right of the sonar axis in a robust manner. The sonar employs a pair of Polaroid 6500 ranging modules connected to Polaroid 7000 transducers operating simultaneously in a binaural array configuration. The sonar determines which transducer detects the echo first. An outward vergence angle between the transducers improves the first-echo detection reliability by increasing the delay between the two detected echoes, a consequence of threshold detection. We exploit this left/right detection capability in an ETA that provides vibrotactile feedback. Pager motors mount on both sides of the sonar, possibly worn on the user's wrists. The motor on the same side as the reflecting object vibrates with speed inversely related to range. As the sonar or object moves, vibration patterns provide landmark, motion and texture cues. Orienting the sonar at 451 relative to the travel direction and passing a right-angle corner produces a characteristic vibrational pattern. When pointing the sonar at a moving object, such as a fluttering flag, the motors alternate in a manner to give the user a perception of the object motion. When the sonar translates or rotates to scan a foliage surface, the vibrational patterns are related to the surface scatterer distribution, allowing the user to identify the foliage.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:49 ,  Issue: 10 )

Date of Publication:

Oct. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.