By Topic

Model selection in electromagnetic source analysis with an application to VEFs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
L. J. Waldorp ; Dept. of Psychol., Amsterdam Univ., Netherlands ; H. M. Huizenga ; R. P. P. P. Grasman ; K. B. E. Bocker
more authors

In electromagnetic source analysis, it is necessary to determine how many sources are required to describe the electroencephalogram or magnetoencephalogram adequately. Model selection procedures (MSPs) or goodness of fit procedures give an estimate of the required number of sources. Existing and new MSPs are evaluated in different source and noise settings: two sources which are close or distant and noise which is uncorrelated or correlated. The commonly used MSP residual variance is seen to be ineffective, that is it often selects too many sources. Alternatives like the adjusted Hotelling's test, Bayes information criterion and the Wald test on source amplitudes are seen to be effective. The adjusted Hotelling's test is recommended if a conservative approach is taken and MSPs such as Bayes information criterion or the Wald test on source amplitudes are recommended if a more liberal approach is desirable. The MSPs are applied to empirical data (visual evoked fields).

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:49 ,  Issue: 10 )