By Topic

The use of the SPSA method in ECG analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gerencser, L. ; Comput. & Autom. Inst., Hungarian Acad. of Sci., Budapest, Hungary ; Kozmann, G. ; Vago, Z. ; Haraszti, K.

The classification, monitoring, and compression of electrocardiogram (ECG) signals recorded of a single patient over a relatively long period of time is considered. The particular application we have in mind is high-resolution ECG analysis, such as late potential analysis, morphology changes in QRS during arrythmias, T-wave alternants, or the study of drug effects on ventricular activation. We propose to apply a modification of a classical method of cluster analysis or vector quantization. The novelty of our approach is that we use a new distortion measure to quantify the distance of two ECG cycles, and the class-distortion measure is defined using a min-max criterion. The new class-distortion-measure is much more sensitive to outliers than the usual distortion measures using average-distance. The price of this practical advantage is that computational complexity is significantly increased. The resulting nonsmooth optimization problem is solved by an adapted version of the simultaneous perturbation stochastic approximation (SPSA) method of J. Spall (IEEE Trans. Automat. Contr., vol. 37, p. 332-41, Mar. 1992). The main idea is to generate a smooth approximation by a randomization procedure. The viability of the method is demonstrated on both simulated and real data. An experimental comparison with the widely used correlation method is given on real data.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:49 ,  Issue: 10 )