Cart (Loading....) | Create Account
Close category search window
 

Physically-based audio rendering of contact

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Avanzini, F. ; Dipt. di Elettronica e Inf., Padova Univ., Italy ; Rath, M. ; Rocchesso, D.

This paper describes an algorithm for real-time synthesis of contact sounds for interactive simulations and animation. The algorithm is derived from a physically-based impact model, and the acoustic characteristics of colliding objects can be realistically simulated by properly adjusting the physical parameters of the model. A technique for describing the spatial dynamics of a resonating object is proposed, which allows simulation of position-dependent interaction. It is shown that the numerical implementation leads to an efficient sound synthesis module, that runs in real-time on low cost platforms. The effectiveness of the model is demonstrated, and its applications are discussed.

Published in:

Multimedia and Expo, 2002. ICME '02. Proceedings. 2002 IEEE International Conference on  (Volume:2 )

Date of Conference:

2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.