Cart (Loading....) | Create Account
Close category search window
 

Fault-tolerant drive-by-wire systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Isermann, Rolf ; Inst. fiuer Automatisierungstechnik Technische, Univ. Darmstadt, Germany ; Schwarz, R. ; Stolzl, S.

The article begins with a review of electronic driver assisting systems such as ABS, traction control, electronic stability control, and brake assistant. We then review drive-by-wire systems with and without mechanical backup. Drive-by-wire systems consist of an operating unit with an electrical output, haptic feedback to the driver, bus systems, microcomputers, power electronics, and electrical actuators. For their design safety, integrity methods such as reliability, fault tree and hazard analysis, and risk classification are required. Different fault-tolerance principles with various forms of redundancy are considered, resulting in fail-operational, fail-silent, and fail-safe systems. Fault-detection methods are discussed for use in low-cost components, followed by a review of principles for fault-tolerant design of sensors, actuators, and communication. We evaluate these methods and principles and show how they can be applied to low-cost automotive components and drive-by-wire systems. A brake-by-wire system with electronic pedal and electric brakes is then considered in more detail, showing the design of the components and the overall architecture. Finally, we present conclusions and an outlook for further development of drive-by-wire systems.

Published in:

Control Systems, IEEE  (Volume:22 ,  Issue: 5 )

Date of Publication:

Oct 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.