By Topic

Extension of operation of space vector PWM strategies with low switching frequencies using different overmodulation algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. Narayanan ; Dept. of Electr. Eng., Indian Inst. of Sci., Indianapolis, IN, USA ; V. T. Ranganathan

This paper investigates the operation of four space vector-based synchronized pulse-width modulation (PWM) strategies in the overmodulation zone using three different overmodulation algorithms. It is shown that the symmetries in the PWM waveforms generated can be preserved in the overmodulation zone also. With any given overmodulation algorithm, the voltage control characteristics (i.e., fundamental voltage versus control variable) are found to vary with PWM strategy, pulse number and type of clamping. The inverse of the appropriate voltage control curve is used during premodulation to maintain the modulator gain constant. The differences in the nature of the voltage control characteristics with the different overmodulation algorithms are brought out. These characteristics are compared and contrasted against those at high switching frequencies. The harmonic distortion in the different cases is evaluated and compared. It is shown that the bus clamping strategies perform better than the conventional strategy with any given overmodulation algorithm employed. These strategies, which exploit the flexibilities in the space vector approach, are useful in high power drives on account of their superior waveform quality at low switching frequencies and high DC bus utilization.

Published in:

IEEE Transactions on Power Electronics  (Volume:17 ,  Issue: 5 )