By Topic

Instantaneous power compensation in three-phase systems by using p-q-r theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hyosung Kim ; Dept. of Control Eng., Cheonan Nat. Tech. Coll., Chungnam, South Korea ; Blaabjerg, F. ; Bak-Jensen, B. ; Jaeho Choi

This paper proposes a novel power compensation algorithm in three-phase four-wire systems by using p-q-r theory. The p-q-r theory is compared with two previous instantaneous power theories, p-q theory and cross vector theory. The p-q-r theory provides two-degrees of freedom to control the system currents by only compensating the instantaneous imaginary power without using any energy storage element. The definition of powers maintains power conservation, and agrees well with the general understanding of power. Simulation results show the superiority of p-q-r theory both in definition and compensation.

Published in:

Power Electronics, IEEE Transactions on  (Volume:17 ,  Issue: 5 )