By Topic

On the recovery of a function on a circular domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Pawlak ; Dept. of Electr. & Comput. Eng., Manitoba Univ., Winnipeg, Man., Canada ; S. X. Liao

We consider the problem of estimating a function f (x, y) on the unit disk f {(x, y): x2+y2≤1}, given a discrete and noisy data recorded on a regular square grid. An estimate of f (x, y) based on a class of orthogonal and complete functions over the unit disk is proposed. This class of functions has a distinctive property of being invariant to rotation of axes about the origin of coordinates yielding therefore a rotationally invariant estimate. For-radial functions, the orthogonal set has a particularly simple form being related to the classical Legendre polynomials. We give the statistical accuracy analysis of the proposed estimate of f (x, y) in the sense of the L2 metric. It is found that there is an inherent limitation in the precision of the estimate due to the geometric nature of a circular domain. This is explained by relating the accuracy issue to the celebrated problem in the analytic number theory called the lattice points of a circle. In fact, the obtained bounds for the mean integrated squared error are determined by the best known result so far on the problem of lattice points within the circular domain.

Published in:

IEEE Transactions on Information Theory  (Volume:48 ,  Issue: 10 )