By Topic

Adaptive linearly constrained inverse QRD-RLS beamforming algorithm for moving jammers suppression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shiunn-Jang Chern ; Dept. of Electr. Eng., Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Chung-Yao Chang

A general, linearly constrained (LC) recursive least squares (RLS) array-beamforming algorithm, based on an inverse QR decomposition, is developed for suppressing moving jammers efficiently. In fact, by using the inverse QR decomposition-recursive least squares (QRD-RLS) algorithm approach, the least-squares (LS) weight vector can be computed without back substitution and is suitable for implementation using a systolic array to achieve fast convergence and good numerical properties. The merits of this new constrained algorithm are verified by evaluating the performance, in terms of the learning curve, to investigate the convergence property and numerical efficiency, and the output signal-to-interference-and-noise ratio. We show that our proposed algorithm outperforms the conventional linearly constrained LMS (LCLMS) algorithm, and the one using the fast linear constrained RLS algorithm and its modified version.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:50 ,  Issue: 8 )