By Topic

Study of solar cell fabrication using an electrostatic thick-film printing method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Teng, R.K.F. ; Dept. of Electr. Eng., California State Univ., Long Beach, CA, USA ; Mostafa, A.A. ; Karim, A.

A novel thick-film circuit printing technique which is based on the electrostatic principle known as noncontact electrostatic thick-film printing was developed for the metallization of edge-defined film-fed growth (EFG) solar cells. The conventional thick-film solar cell inks were modified by adding 10-20% terpineol solvent. The effects of ink viscosity, applied voltages, nozzle diameter, and nozzle-to-substrate distance on line definition and ink-flow rate were investigated. A simple theoretical model was derived for the electrostatic ink ejection. The minimum line width obtained was 3 mm. Multilayer printing was able to be used to raise the line film thickness. The maximum line width obtained was about 20-30 mm for a single run. The system is now completely computercontrolled and capable of printing films onto solar cell substrates reliably, with a high degree of accuracy. Multiple-layer prints can be made with food layer-to-layer registration

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:37 ,  Issue: 5 )