Cart (Loading....) | Create Account
Close category search window
 

Channel estimation techniques based on pilot arrangement in OFDM systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Coleri, S. ; Electr. Eng., California Univ., Berkeley, CA, USA ; Ergen, M. ; Puri, A. ; Bahai, A.

Channel estimation techniques for OFDM systems based on a pilot arrangement are investigated. Channel estimation based on a comb type pilot arrangement is studied through different algorithms for both estimating the channel at pilot frequencies and interpolating the channel. Channel estimation at pilot frequencies is based on LS and LMS methods while channel interpolation is done using linear interpolation, second order interpolation, low-pass interpolation, spline cubic interpolation, and time domain interpolation. Time-domain interpolation is obtained by passing to the time domain by means of IDFT (inverse discrete Fourier transform), zero padding and going back to the frequency domain by DFT (discrete Fourier transform). In addition, channel estimation based on a block type pilot arrangement is performed by sending pilots in every sub-channel and using this estimation for a specific number of following symbols. We have also implemented a decision feedback equalizer for all sub-channels followed by periodic block-type pilots. We have compared the performances of all schemes by measuring bit error rates with 16QAM, QPSK, DQPSK and BPSK as modulation schemes, and multipath Rayleigh fading and AR based fading channels as channel models.

Published in:

Broadcasting, IEEE Transactions on  (Volume:48 ,  Issue: 3 )

Date of Publication:

Sep 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.