By Topic

An efficient path computation model for hierarchically structured topographical road maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sungwon Jung ; Dept. of Comput. Sci., Sogang Univ., Seoul, South Korea ; S. Pramanik

In this paper, we have developed a HiTi (Hierarchical MulTi) graph model for structuring large topographical road maps to speed up the minimum cost route computation. The HiTi graph model provides a novel approach to abstracting and structuring a topographical road map in a hierarchical fashion. We propose a new shortest path algorithm named SPAH, which utilizes HiTi graph model of a topographical road map for its computation. We give the proof for the optimality of SPAH. Our performance analysis of SPAH on grid graphs showed that it significantly reduces the search space over existing methods. We also present an in-depth experimental analysis of HiTi graph method by comparing it with other similar works on grid graphs. Within the HiTi graph framework, we also propose a parallel shortest path algorithm named ISPAH. Experimental results show that inter query shortest path problem provides more opportunity for scalable parallelism than the intra query shortest path problem.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:14 ,  Issue: 5 )