By Topic

An information architecture for future power systems and its reliability analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhaoxia Xie ; Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; G. Manimaran ; V. Vittal ; A. G. Phadke
more authors

Analysis of 162 disturbances from 1979 to 1995 reported by the North American Electric Reliability Council (NERC) indicates the importance of information systems under the regulated and competitive environment. This paper points out the major deficiencies in current communication and information systems and proposes a new power system information architecture aimed at correcting these deficiencies. The proposed architecture includes automation and control systems at all levels, from substation control system to independent system operator (ISO) operating center, taking into account the requirements of real-time data, security, availability, scalability, and appropriate Quality of Service (QoS). It uses multiple communication channels employing a wide variety of technologies to transmit real-time operating data and control signals. The real-time operating and control system is modeled with various redundancy configurations; the reliabilities of different configurations are studied and compared for practical values of component failure rates and repair rates.

Published in:

IEEE Transactions on Power Systems  (Volume:17 ,  Issue: 3 )