By Topic

MIMO antenna subset selection with space-time coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
GORE, D.A. ; Inf. Syst. Lab., Stanford Univ., CA, USA ; Paulraj, A.J.

This paper treats multiple-input multiple-output (MIMO) antenna subset selection employing space-time coding. We consider two cases differentiated based on the type of channel knowledge used in the selection process. We address both the selection algorithms and the performance analysis. We first consider the case when the antenna subsets are selected based on exact channel knowledge (ECK). Our results assume the transmission of orthogonal space-time block codes (with emphasis on the Alamouti (see IEEE J. Select. Areas Commun., vol.16, p.1451-68, Oct. 1998) code). Next, we treat the case of antenna subset selection when statistical channel knowledge (SCK) is employed by the selection algorithm. This analysis is applicable to general space-time coding schemes. When ECK is available, we show that the selection algorithm chooses the antenna set that maximizes the channel Frobenius norm leading to both coding and diversity gain. When SCK is available, the selection algorithm chooses the antenna set that maximizes the determinant of the covariance of the vectorized channel leading mostly to a coding gain. In case of ECK-based selection, we provide analytical expressions for average SNR and outage probability improvement. For the case when SCK-based selection is used, we derive expressions for coding gain. We also present extensive simulation studies, validating our results.

Published in:

Signal Processing, IEEE Transactions on  (Volume:50 ,  Issue: 10 )