By Topic

An efficient algorithm for automatically generating multivariable fuzzy systems by Fourier series method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liang Chen ; Dept. of Math & Comput. Sci., Northern British Columbia Univ., Prince George, BC, Canada ; Tokuda, N.

By exploiting the Fourier series expansion, we have developed a new constructive method of automatically generating a multivariable fuzzy inference system from any given sample set with the resulting multivariable function being constructed within any specified precision to the original sample set. The given sample sets are first decomposed into a cluster of simpler sample sets such that a single input fuzzy system is constructed readily for a sample set extracted directly from the cluster independent of the other variables. Once the relevant fuzzy rules and membership functions are constructed for each of the variables completely independent of the other variables, the resulting decomposed fuzzy rules and membership functions are integrated back into the fuzzy system appropriate for the original sample set requiring only a moderate cost of computation in the required decomposition and composition processes. After proving two basic theorems which we need to ensure the validity of the decomposition and composition processes of the system construction, we have demonstrated a constructive algorithm of a multivariable fuzzy system. Exploiting an implicit error bound analysis available at each of the construction steps, the present Fourier method is capable of implementing a more stable fuzzy system than the power series expansion method of ParNeuFuz and PolyNeuFuz, covering and implementing a wider range of more robust applications.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:32 ,  Issue: 5 )