By Topic

Resolution of the ocean wave propagation direction in SAR imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vachon, P.W. ; Canada Centre for Remote Sensing, Ottawa, Ont., Canada ; Raney, R.K.

There is an inherent 180° ambiguity in the derived wave propagation direction when using conventional spectral analysis techniques on standard synthetic aperture radar (SAR) image products. Three different techniques are successfully used to resolve this ambiguity in propagation direction using a single pass of airborne SAR data. The fact that the SAR is characterized by a large time-bandwidth product is used to advantage. A sequence of individual looks extracted from the Doppler spectrum represents images of the scene collected at a sequence of discretely delayed intervals of time. The techniques utilized include cross-correlation-based motion analysis of a pair of looks, phase weighting based upon a pair of looks and the ocean wave dispersion relation, and a three-dimensional spectral analysis. The phase weighting technique is also demonstrated for a Seasat SAR scene

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:29 ,  Issue: 1 )